The multivariate version of the Mixed Tempered Stable is proposed. It is a generalization of the Normal Variance Mean Mixtures. Characteristics of this new distribution and its capacity in fitting tails and capturing dependence structure between components are investigated. We discuss a random number generating procedure and introduce an estimation methodology based on the minimization of a distance between empirical and theoretical characteristic functions. Asymptotic tail behavior of the univariate Mixed Tempered Stable is exploited in the estimation procedure in order to obtain a better model fitting. Advantages of the multivariate Mixed Tempered Stable distribution are discussed and illustrated via simulation study.
↧